Walter L. Wagner – Wahrscheinlichkeitsrechnung mit dem „Radiation Man“
Um Walter L. Wagner ist es ruhig geworden. Nachdem der Amerikaner vor einem US-Gericht, wie viele andere Beschwerdeführer und Petenten, mit seiner Klage zum Stopp des Large Hadron Colliders scheiterte, ist es aus mit den vorgeblichen Aktivitäten zur Rettung der Erde. Seine Kampagnesite wurde seit April 2009 nicht mehr aktualisiert und Wagner ist selbst in den Medien des LHC-Widerstands nicht mehr wahrnehmbar. Der streitbare Wagner, der sich bereits in ähnlicher Manier mit dem RHIC angelegt hatte, wurde zu seinem Abgang allerdings noch einmal auf Herz und Nieren geprüft. Die Diagnose war erschreckend.
Das satirische TV-Format „The Daily Show“ sendete am 30. April 2009 einen Beitrag, in dem zum Thema Large Hadron Collider neben dem CERN-Wissenschaftler John R. Ellis auch der amerikanische LHC-Gegner von John Oliver interviewt wurde. Der Beitrag ist ein Klassiker des Debunking, der selbst hartgesottenen Beobachtern dieser Szene die Tränen in die Augen treibt.
Large Hadron Collider – The Daily Show 30.04.2009
Sollte das Video nicht starten, bitte unter dem angegebenen Link aufrufen.)
Ab time stamp 02:16 kommt Walter L. Wagner in den Clip. Und schliesslich nimmt er es sich auch nicht, die Wahrscheinlichkeit der ultimativen Zerstörung unseres Erdplaneten abzuschätzen.
Well, the best we can fix say right now it’s about one in a two chance. … Yeah, fifty fifty. The chance, is a fifty fifty chance. … Well, if you have something that can happen, and something that ought necessary, it could either happen, or it could not happen. And so it’s so. The best guess is one in two. (ab time stamp 02:43)
Wagner demonstriert hier sehr nachdrücklich, dass man auch dann Erfolg haben kann, wenn man einfach keine Ahnung hat. Diesmal war es ein Lacherfolg beim Publikum, wenn auch unfreiwillig, das seine mathematischen Peinlichkeiten im Ansatz durchschaute.
Auch der Tübinger Otto E. Rössler hat so ähnliche Vorlieben wie Wagner (Rössler über Wagner: „Ich bewundere ihn.“), das Ende der Welt in Wahrscheinlichkeiten zu fassen. Von Rössler gab es mehrere Wahrscheinlichkeitswerte, legendär sind allerdings seine „16 Prozent“. Die hatten es sogar in die Petition von Nico Ohlemeyer) an den Deutschen Bundestag geschafft. 16 Prozent? Rössler gibt eine ebenso einleuchtende Begründung wie jene von Walter L. Wagner. Es kann passieren, oder es kann nicht passieren. Walter L. Wagner wirft eine Münze und kommt auf eine Chance von 1:1. Otto E. Rössler, europäischer geprägt, dreht eine Revolverkammer und kommt zu einem ähnlichen Ergebnis.
The equally old, unavoidably handwaving, 1 to 6 estimate published more than a year ago goes unchallenged, too. … The planned experiment then acquires the rank of an old-fashioned Russian roulette (1 out of 6 chambers loaded).
Wagner ist wie Rössler kein Physiker. Wie der Tübinger hat auch der Amerikaner eine Vorgeschichte und eine gebrochene Biographie.
R. Eric VanNewkirk hatte im Dezember 2008 auf seinem Blog eine quellenreiche und entlarvende Gesamtschau über Walter L. Wagner zusammengetragen, die Bände spricht. Grössere Aufmerksamkeit erzielte Wagner immer nur dann, wenn er sich möglichst schrill gegen die Autoritäten öffentlich in Szene setzte. Und diese Öffentlichkeit seine schillernden Phantasien zunächst zu nahe an sich heran liess. In dieser Rolle ist er ein Ebenbild des Tübinger Rössler. In der Schlusseinstellung im Schutzkeller bringt John Oliver diese ganze soap opera schliesslich auf den Punkt.With all of my last words in this life to be: „Oh shut up Walter!“ (ab time stamp 05:52)
Man kann das problemlos auf Otto E. erweitern.
- Diskutiere über Walter L. Wagner und Otto E. Rössler im Forum Alpha Centauri!
RelativKritisch E-Edition
Als ePub herunterladen 674Die Artikel von RelativKritisch gibt es auch als E-Book im ePub-Format zum kostenlosen Download!
Ähnliche Beiträge
- Otto E. Rössler – Zum 70. Geburtstag
- Otto E. Rössler – Ich will nicht widerlegt werden!
- Otto E. Rössler – Der Wolf im Schafspelz
- Google Street View – Zwischen Datenkrake und Datenschutzhölle
- Mathias Richling – Einstein der Weisen
Hallo achtphasen,
führen Sie bitte für Leute wie mich, die da etwas schwer von Begriff sind, näher aus: Was konkret soll gezeigt werden, was sind hierzu die Voraussetzungen und was folgt auf Seite 20 woraus und wofür ? Verwenden Sie gerne die formale Notation mit „=>“.
Freundliche Grüsse, Ralf Kannenberg
Schreibfehler, das sollte Seite 24 heissen.
Hallo achtphasen,
wunderbar, dann sind Sie ja schon ein Fortgeschrittener. Dann können Sie hier einmal weiterlesen: „Problems with empirical bounds for strangelet production at RHIC“ (Authors: Adrian Kent)
Bitte missverstehen Sie aber nicht die Ergebnisse dieser Arbeit. Und keine Sorge, ich halte noch weitere Publikationen in Hinterhand.
Freundliche Grüsse, Ralf Kannenberg
Hallo achtphasen,
ehe Sie sich die Mühe nehmen und Kent lesen, und ehe Sie meine Frage bezüglich Seite 24 beantworten, gebe ich Ihnen aber noch einen Tipp, denn auf Seite 26 von Wilczek et al. steht:
Freundliche Grüsse, Ralf Kannenberg
Und der nächste Schreibfehler – ich habe versehentlich die Notation von Herrn Eric Penrose übernommen; es sollte Jaffe et al. heissen.
Sehr gelehrter Herr Kannenberg, machen Sie mal halblang. Ich werde nun gewiss nicht entsprechend Ihrer Vorgaben hier antworten. Drei Jahre der endlosen Diskussionen mit Ihnen sind ausreichend. Falls Sie zu meinen Ausführungen konkrete Einwände machen können, dann nur zu. Darauf werde ich antworten. Für weitere kannenbergsche Themaverwässerung ist mir meine Zeit zu kostbar.
Aber weil Sie ja von weiteren
und von
schwadronieren …
==> hier ist Herrn Penroses Website „Heavy Ion Alert“ und hier seine pdf-Dokumentation zur Strangeletsuche am LHC „How CERN’s Documents Contradict its own Safety Assurances: Plans for „Strangelet“ Detection at the LHC„
Hallo achtphasen,
das ist auch nicht erforderlich: dass Sie den Inhalten der genannten Referenzen nicht ergebnisoffen aufgeschlossen sind und statt dessen lieber von „Maulwürfen“ oder in anderen Fällen von „Betrügern“ und „Totschlägern“ erzählen, ist hinreichend bekannt und auch dokumentiert.
Es gibt aber vielleicht Leserinnen und Leser, die sich auch ergebnisoffen für die Inhalte dieser Referenzen interessieren und für diese habe ich meine Beiträge verfasst.
Vielleicht haben Sie eines Tages Lust, sich auch in die Gruppe dieser Personen einzureihen; nach 3 Jahren
mit u.a. mir habe ich diesbezüglich indes wenig Hoffnung. Aber das ist selbstverständlich ausschliesslich Ihre Angelegenheit, wie Sie wissenschaftlich arbeiten möchten.
Und wenn Sie so freundlich wären und sich an die gute wissenschaftliche Praxis halten würden, so könnte ich mich wieder vermehrt im Hintergrund mit den Weissen Zwergen beschäftigen und bräuchte Sie in der Öffentlichkeit nicht mit Richtigstellungen zu belästigen.
Freundliche Grüsse, Ralf Kannenberg
Hallo achtphasen,
möglich, dass #53 | ralfkannenberg | 5. September 2011, 11:34 Uhr übersehen haben:
Auch möglich, dass Sie nicht bemerkt haben, dass in der Arbeit von Dr.Kent, auf die ich hingewiesen habe, gerade solche Einwände erörtert werden.
Freundliche Grüsse, Ralf Kannenberg
Herr Kannenberg,
wann denn kommen nun, nach all Ihren hektischen und als Spam zu wertenden Kommentaren, Ihre
zu p<1 ???
Review of Speculative “Disaster Scenarios” at RHIC
der Autoren R.L. Jaffe, W. Busza, J.Sandweiss und F. Wilczek
Abstract: http://arxiv.org/abs/hep-ph/9910333
Version3 als pdf: http://arxiv.org/pdf/hep-ph/9910333v3 Seite 24 unten
Um es auch Ihnen klar zu machen, Herr Kannenberg:
Dieses peer-reviewte paper der Autoren R.L. Jaffe, W. Busza, J.Sandweiss und F. Wilczek wird seit 12 Jahren als Begründung herangezogen, warum mit HEP-Experimenten keinerlei Risiko der Bildung eines gefährlichen Strangelets einhergehen sollte.
In diesem paper aber widerlegen sich die Autoren selbst, wie ich in meinen vorhergegangenen Beiträgen begründet habe.
Dass die Autoren sich selbst widerlegen, ist aber kein Zufall, sondern schlicht Wahrheit, die da durchscheint… auch wenn sie die Konsequenz dieser Wahrheit im Rest der Erörterungen zu Strangelet-Risiken verschleiern; indem auf dieses p<1 in CaseIV einfach nicht mehr weiter eingegangen wird.
Diese Wahrheit konnten (und wollten) die Autoren (wohl) nicht gänzlich verheimlichen.
Skandalös ist, dass dieses Dokument so selbst widerlegend nun schon seit 12 Jahren als Referenz aller später publizierter Risikolosigkeitsverlautbarungen herangezogen wird … und noch immer niemand aus dem HEP-Establishment den Finger auf diese Wiedersprüchlichkeit gelegt hat.
Dieses peer-reviewte aber selbst-widerlegende Dokument wurde gegen Herrn Wagners Versuche, per Justiz die Gefährdung des Fortbestandes der Erde einzuklagen, als Sicherheitsbeweis angeführt.
Ihre Versuche, Herr Kannenberg, die Diskussion mit mir nun von diesem Dokument weg auf andere Dokumente zu leiten entspricht Ihrer gewohnten Strategie per Belesenheit zu blenden.
Freundliche Grüsse
Hallo achtphasen,
das ist elementare Mathematik, da ist hoffentlich nichts richtigzustellen.
Und nun ist es einmal an mir, festzuhalten, dass ich wirklich besseres zu tun habe als auf sowas zu antworten.
Fragen Sie statt dessen lieber mal Ihren neuen Mentor, warum er seinen Higgs-Boson-Einwand erst nach 3 Jahren formuliert hat und warum er auf der Gültigkeit eines Theorems beharrt, obgleich die Voraussetzungen gar nicht erfüllt sind. Das bringt mehr als Ihr selektives Zitieren aus Jaffe et al.; überdies habe ich nun wirklich keine Lust, mit einem Nicht-Physiker zu diskutieren, was eine „bizarre“ Geschwindigkeitsverteilung ist. Falls Ihnen das in den Sinn kommen sollte, suchen Sie sich bitte einen anderen Gesprächspartner.
Freundliche Grüsse, Ralf Kannenberg
Hallo achtphasen,
da Sie ja jede Erläuterung von mir zu diesem Thema ignorieren, empfehle ich Ihnen, eine Publikation zu verfassen, in der Sie das Paper von Jaffe et al. richtigzustellen versuchen.
Da Sie ja einen wie Sie meinen Fehler korrigieren, wird es kein Problem sein, dass Ihre Richtigstellung in einer anerkannten Fachzeitschrift veröffentlicht wird.
Das ganze hätte dann auch den Vorteil, dass die LHC-Kritik jederzeit transparent auf Ihre Publikation verweisen kann.
Freundliche Grüsse, Ralf Kannenberg
(fett hervorgehoben von mir)
Hallo achtphasen,
die von Ihnen zitierte Textstelle steht nicht in der Conclusion, sondern im Gegenteil ganz vorne im Abstract, sogar noch vor der Introduction.
Und jetzt erwarte ich wirklich eine konkrete Stellungnahme von Ihnen hierzu.
Freundliche Grüsse, Ralf Kannenberg
Lieber Herr Kannnberg, Sie scheinen heute ja ganz besonders ausser Rand und Band zu sein. Tief durchatmen hilft.
In der ‚Conclusion‘ steht gar nichts, weil dieses paper gar keine als ‚Conclusion‘ betitelte Zusammenfassung am Ende des papers bietet.
Aber dennoch IST Konklusion des papers, dass betreffs Strangelets seitens der Autoren eben leider geschrieben worden ist:
obschon p<1 in CaseIV genau darauf hinweist, dass das vierte der
eben mit der Wahrscheinlichkeit p<1
sein könnte.
(notabene ist CaseIV derjenige ‚Case‘ der den Kollisionsbedingungen am RHIC am nächsten kommt)
In der Hoffnung Ihnen geholfen zu haben!
Hallo achtphasen,
na das ist ja schon mal etwas, dass Sie das herausgefunden haben.
Verbleiben noch zwei Fragen:
1. warum interpretieren Sie einen Abschnitt, der sich noch vor der introduction befindet, als conclusion ?
2. warum ignorieren Sie das Statement mit der bizarren Geschwindigkeitsverteilung ?
Freundliche Grüsse, Ralf Kannenberg
Hallo achtphasen,
könnten Sie mir bitte kurz darlegen, was die „Cases I bis IV“ mit den „four separate requirements“ zu tun haben ?
Freundliche Grüsse, Ralf Kannenberg
@Ralf Kannenberg
Thanks for clarifying that the „Z“ I referred to was atomic number. I’m so used to the terminology that I sometimes forget others might not be familiar with it.
@41
Thanks for the further elucidation of some of the differences between the LHC and nature. You are quite correct also, at the LHC any strangelets produced would be relatively slow-moving (with a wide range of sub-relativistic velocities); whereas any strangelets produced on the moon (if a p-on-Lead, or even Iron-on-Lead though no Irons have been measured at those energies, only p/He) would have relativistic velocities relative to the moon (to conserve momentum of the incoming particle). Strangelet theory suggests that if they struck another nucleus at high velocity, they would not survive the impact as a strangelet, and would therefore essentially disappear. So if they are made on the moon under conditions similar to the LHC but still quite different, they likely would not survive to grow. Conversely, if they were made at relatively slow speed at the LHC, and enter into a liquid He region and slow to a stop, they would be in an excellent growing-medium to become stabilized.
It appears that most of the LHC supporters have taken the stance that critics must prove with 100% certainty that it is not safe, whereas general safety considerations require the opposite, namely that CERN prove with near 100% certainty that it is safe.
Since they cannot relay on the LHC mimicking what nature does, they only have theoretical considerations to work from. And as mentioned, the theoretical considerations leave open the possibility of strangelets being made at the LHC, slowing to a stop in liquid He, and growing to stability.
Wilczek et al. argued in their court brief that the above scenario was „unlikely“ without giving any explanation.
It might very well be „unlikely“. But it might also be correct. Niemand weiss. Jederman braucht sicherheit.
Walter L. Wagner
Walter,
do you consider this
([BJSW00]/eq(14))
a reasonable model?
If so, why?
Regards,
Holger
[BJSW00] W. Busza, R. L. Jaffe, J. Sandweiss, and Frank Wilczek. Review of speculative ’disaster scenarios’ at RHIC. Rev. Mod. Phys., 72:1125–1140, 2000.
Hello Dr.Wagner,
thank you very much for replying to (3). Do you like to answer my questions (1) and (2) as well ?
Thank you very much in advance and best regards, Ralf Kannenberg
@67; @68
It does not appear that you are addressing any of my comments. A discussion about strangelets cannot be obtained without discussing the topic.
Hello Dr.Wagner,
it does not appear that you are answering any of the questions raised so far.
Is there a reason for that ?
Best regards, Ralf Kannenberg
@#69
On the contrary, Walter, you were, amongst other things, talking about velocities and I just picked that gauntlet up.
So again:
Hello Dr.Wagner,
just a technical question: Until now no dangerous strangelets have been produced at RHIC or in the LHC. Why do you expect that future operation of the LHC might produce any ? Please take into consideration that in a hot environment (like the LHC) strangelets are not expected to be formed.
Thank you in advance and best regards, Ralf Kannenberg
… habitual behave of the nerds in this forum is to pose a nebula of pseudo-interesting chitchat-questions with the intention to clue the ‚opponent‘ on his ‚duty‘ to answer upon …
@72
No one expects strangelets to be made until a minimum threshold energy has been created.
The RHIC apparently has not made that minimum threshold. Likewise the LHC at 1/2 energy has not passed that threshold. We do not know where that threshold lies. Thus, it remains possible that the threshold exists at below 14 TeV (LHC future maximum), and above 7 TeV (current operations).
All theories of strangelet creation are that they are made in a ‚hot‘ environment in which the excess kinetic energy of the collision creates strange quarks in abundance. Once the energy is sufficiently high to release the quark binding (forming the proverbial quark-gluon-plasma, qgp, even if the quarks are still technically bound but ‚loose‘), the excess energy can go into creation of other quarks, particular the relatively low-mass strange quark. That is the original theory as developed by numerous others. It is technically not correct to refer to the ‚temperature‘ as continuing to increase once that state is reached, because the excess energy does not go into higher velocity (higher temperature), but rather into energy-into-mass creation of quarks. So, once we are in that realm (and we just barely were at that realm, though debated, at the RHIC, and we are now so at the LHC at 1/2 energy) we might possibly pass a threshold where sufficient strange-quarks are formed to create a metastable strangelet of a few strange, up and down quarks. But of course, no one knows whether that is possible, but there has been extensive literature published on that possibility, very little of which has addressed the safety aspects of creating something more stable than an Iron/Nickel nucleus.
@72
I forgot to mention that there are research protocols to search for strangelets at the LHC. Obviously your assertion that strangelets are not expected to be formed is not a belief held by those LHC researchers. Personally, I don’t know whether they can or not.
Incidentally, some theorists (such as Wilczek, who proclaimed as such in his legal brief) believe that production of negative strangelets is „unlikely“, but rather that if any form, they would be positive, concluding therefor that they would then be harmless, as being prevented from fusing with normal atoms due to the coulomb barrier. In essence, such a strangelet would glom on to electrons, forming a strangelet atom, and being prevented form fusing just as Deuterium does not spontaneously fuse when in a molecular state such as D2 or D2O. This ‚argument‘ is spurious for two primary reasons.
First, even if „unlikely“, WIlczek was not able to demonstrate ‚impossible‘; indeed, he did not even expound on how he found it to be „unlikely“, and other theorists have posited it might be possible.
Second, because of the much higher stability of the strangelet nucleus (greater binding than even Fe or Ni nuclei), it might be possible for a strangelet atom to spontaneously engage in fusion with low-Z atoms despite the presumed ‚coulomb barrier‘, which is lower for a strangelet. We’ve seen this lowering of the barrier with normal D when they are brought closer together in their chemical bonds when the electron is replaced with a meson, shortening the chemical bond, and increasing the spontaneous fusion rate many orders of magnitude. We don’t know what the spontaneous fusion rate for a positive strangelet might be, but it might be as low as about 1/day initially if stopped in a bath of Helium, slowly increasing as the mass grew larger and its binding stability increased, until it begins a more rapid fusion.
Most of the safety argument that approximates any degree of validity that I’ve seen relies on the relatively slow fusion rate keeping strangelets relatively small (and their ability to engage in a significant amount of fusion) over the lifetime of our planet. But there are wide error bars on those arguments, which I won’t address here.
So, the ’safety arguments‘ that have been thrown around thus far are simply untenable. If this is new to you, then you’ve really not read much of the literature that’s out there on this.
Hello Dr.Wagner,
possibly. Can you please recommend me some good literature ? For the moment I am willing to have a look at 2 publications from your recommendation; one of them with you as author/co-author and for reasons of independence one where you are neither author nor co-author.
It goes without saying that I am only looking at papers that have passed an official peer review.
Thank you in advance and best regards, Ralf Kannenberg
You should start with what Wilczek wrote, which you can find here:
http://www.lhcdefense.com/pdf/Motion%20for%20Leave%20to%20File%20Amended%20Brief%20Amicus%20Curiae.pdf
That is not my website, though it has much of the legal pleadings in the case I filed.
Scroll to page 11 of the above Amici Curiae brief by Wilczek, et al. and you will see his thinking.
He claims that strangelets have to form at the lower energy RHIC before they would be able to form at the LHC. That is nonsensical, and not what the people at the LHC expect. That’s like saying they have to form at the AGS energies (when they used to have Gold on Fixed Target, before the RHIC was built), before they could form at the RHIC. I understand where he comes from on that — the discredited ‚ice-cube‘ scenario, but as I noted, at higher energy, you get mainly more quarks, not mainly higher temperature, allowing for theorists to project that strangelets could still form at LHC energies even if not at RHIC energies, and hence the search protocols at the LHC for them.
Further, he claims that strangelets have to be negative to be dangerous, though as I noted in my previous post, that is not necessarily the case.
Essentially, the entire safety argument presented was that they believed it to be an „unlikely“ („nicht wahrscheinlich) scenario. If you lived below a dam in which the engineer stated it was „unlikely“ to fail, would you be reassured of your safety? If you lived next to a nuclear power plant in Japan in which the engineers assured you that it was „highly unlikely“ that a tsunami would breach the safety, would you be reassured of your safety? Since this is a problem that affects everyone, not just a few, we need a far higher standard of safety.
Hello Dr.Wagner,
good point: What is the meaning of „unlikely“ ? I think, this point leads to the discussion of the question arisen in #71 | Solkar | 5. September 2011, 18:21.
Best regards, Ralf Kannenberg
Dear Walter,
yesterday I asked about your estimation of [BJSW00]/eq(14).
That’s at the very center of the whole safety/risk discussion regarding strangelets, so, for you being of the best known strangelet-skeptic amongst RHIC- and LHC-skeptics, one would expect that you had already considered [BJSW00]/eq(14) in-depth.
But, amazingly enough, instead of answering you conjure a another rabbit out the hat, this time „overlooked dangerous POSITIVELY charged strangelets“.
(Btw – again yet without any related maths presented.)
And even when Ralf signals being inclined to pick up your new „rabbit“ and wants to have a look and politely asks for background papers supportive to your hypotheses you direct him to a brief used against your cause in former legal proceedings.
—
Summing up, that is not the way a fruitful scientific debate could be led.
Walter, it’s you wanting to convince people of the quality of your arguments – not vice-versa.
So it’s you having to contribute sth substantial to the debate, not us having to dig it out.
Regards,
Holger
Dear Walter,
reanimating a closed debate isn’t very satisfying. As you know, there is no rigorous theory that says strangelets must exist. Yet no rigorous theory specifacilly rules them out. The term “unlikely” isn’t very stable against irrational assumptions like yours. But, if you remember, Glashow and Wilson (in Nature 1999) concluded: the “unlikely” production of strangelets was just at the end of the ladder: „The word “unlikely” , however many times it is repeated, just isn’t enough to assuage our fears of this total disaster.“ So RHIC scientists looked for natural evidence. And, the cosmic argument rules out, that strangelets, if they ever exist, are destroying the planet. The data they received from outer space tells us there isn’t any anomaly to be detected.
Regards, galileo2609
@80
Ich glaube dass Sie haben nicht gelesen was Ich schrieb, oder haben nicht verstanden.
The cosmic argument does not rule out strangelets. It is simple as that. If they are made by cosmic rays, then them might be destroyed thereafter with their next collision, which would not happen if made when the colliding particles are moving with near-opposite momentum, as at the LHC. If they are not made because nature does p-on-highZ while the LHC does Lead-on-Lead, then again there is no proof of safety.
Dear Walter,
production and decay of strangelets are well understood, physically. No one needs to worry about that.
Nobody would deny this!
No, Walter. Even if this might follow from physical grounds, scientists regarded the analogues of collider experiments in nature. You know DOI: 10.1016/S0370-2693(99)01307-6. Dar et al. have demonstrated the validity of the cosmic argument beyond your assumptions.
Regards, galileo2609
Hi galileo, would it be possible, that you too would quote the relevant sentence/equationss out of the reverenced paper? Only giving a whole paper as reference isn’t very helpfull for the reader, as you should know.
Meanwhile i was reading again
Review of Speculative “Disaster Scenarios” at RHIC
der Autoren R.L. Jaffe, W. Busza, J.Sandweiss und F. Wilczek
Abstract: http://arxiv.org/abs/hep-ph/9910333
and there i find at page 26 in version3
pdf: http://arxiv.org/pdf/hep-ph/9910333v3
similar argument, than what i suppose is what you mean, and this reads:
but exactly such an argumentation, that the (short) life-time of meta-stable strangelets wouldn’t mean they wouldn’t have enough time to react is NOT an answer against Walters argument If they are made by cosmic rays, then them might be destroyed thereafter with their next collision, which would not happen if made when the colliding particles are moving with near-opposite momentum, as at the LHC. (in his comment #81).
As i explained already early as in #17
Thus: – if Dar and Rujula would really give an answer on this in http://www.sciencedirect.com/science/article/pii/S0370269399013076 …, zhen you might, please!, quote the relevant sentences/equations and would tell the reader where (at which page) they would be doing so.
Thanks!
@82
In addition to the sound argument posited by 83 (achtphasen), you should know that the article you reference from 1999 was debunked way back when. While it is true that highZ cosmic rays will collide head-on in the depths of galactic/intergalactic space with a known rate, and would indeed mimic LHC (or RHIC Gold-Gold collisions, as was the collider then under consideration) Lead-Lead collisions, the collision product will be located quite a few kilometers away from astrophysical bodies such as stars. Like, many light-years away. Thus, the time of transit from the point of collision to the astrophysical body (star) that we might otherwise observe being destroyed (suplus supernovae) is on the order of years. Yet most theory of strangelet production is that they are metastable (‚radioactive‘) when small, and thus have half-lives on the order of minutes to hours, and would disintegrate into normal matter on their transit to such astrophysical body. We could never detect that rare creation of a strangelet in the vastness of space, that subsequently radioactively decayed shortly following its creation by nature..
This objection was raised by me to the ’safety argument‘ incorporating that ’scenario‘ in the early RHIC safety reviews. It was subsequently acknowledged as correct, and that scenario was deleted as a plausible safety argument.
Why are you raising this again?
Sorry for the many typos in my #83. I was getting angry (early in the morning) about galileo trying again to hide away the relevant arguments on non-nature-likeliness of man-machine-made earthbound Heavy-Ion-collisions,
by only giving reference to full papers,
where – often enough – isn’t to find any concrete answer on concrete question.
Thus:
@galileo:
if Dar and Rujula would really give an answer on
in their paper ( http://www.sciencedirect.com/science/article/pii/S0370269399013076 ) whicht you mentioned without any quotation, then you might, please, quote the relevant sentences/equations!
And please do not forget to tell the reader where (at which page) such answer would be given.
Thanks in advance, again
Hello Dr.Wagner,
thank you for your info. Would you please be so kind and tell me the publication, where I can read these things for better transparency in detail ?
It goes without saying that I am only looking at papers that have passed an official peer review.
Thank you in advance and best regards, Ralf Kannenberg
Hello achtphasen,
such discussion is addressed in chapter D. Cosmic Ray Data Relevant to the Strangelet Scenario of Jaffe et al.
And this leads (again) to the question of Solkar about equation 14 (#71 | Solkar | 5. September 2011, 18:21 Uhr) which is essential in this context.
Best regards, Ralf Kannenberg
There is a remedy for such situations:
Bests, Ralf
Ralf Kannenberg,
thanks for communicating much more constructivly today than yesterday.
I found this quotation Holger/Solkar is asking Walter about in the free
preprint version:
Review of Speculative “Disaster Scenarios” at RHIC
R.L. Jaffe, W. Busza, J.Sandweiss und F. Wilczek
Abstract: http://arxiv.org/abs/hep-ph/9910333
and there i find at page 26 in version3
pdf: http://arxiv.org/pdf/hep-ph/9910333v3
also.
Att page 22:
—–> here is this cryptical equation No.14, which i am asking You, Ralf Kannenberg, as you are a diplomated mathemagician ,‘-), to transform in some more layman-legible form, by formulating in more commonly understandable integrals and differentials, please, because the text before and after this equation:
doesn’t explain, WHY the propability p<1 for CaseIV
should give the authors any reason to conclude, that they would not know any:
Where their fourth requirement, necessary for creation of a dangerous strangelet, is the propability to create an
If all my postings here in this blog are as easy to prove dull and stupid missunderstanding due to lack of higher mathematical skills, you would help other readers and CERN a lot, if you, Ralf Kannenberg (or Solkar, the Maulwurf ,‘-), would bring into clear light, what possibly could be the meaning of equation14.
Thanks a lot!
I won’t contribute here for the next two days, but thereafter, i will be very interested to read, what has been the continuation here.
Hello achtphasen,
If you have not understood my comments it is better to ask rather than claiming inconstructivity.
That is nice. Please note that equations usually are numbered sequencially.
No: You are the person who claims errors in the official publications, thus it is your task to do so. If you need support you can easily get it at Rheinsprung 21, you know where this is. It is amazing that you claim having found an error without understanding the argument.
Thank you for demonstrating your know-how regarding copy/paste-techniques. I have never doubted them.
Furthermore I see no reason to do the work for impolite people calling other people a “Maulwurf”.
Best regards, Ralf Kannenberg
The time-saving alternative to Ralf or me teaching maths here is obvious; we could e.g. simply disregard comments of people not stopping babbling despite confessing not having understand the most relevant formula.
Btw – @achtphasen
I am no „mole“ and I have never been a „mole“.
But it doesn’t come as a surprise to me that from all perspectives you selected the paranoid one as your favorite.
@Walter Wagner
Walter, I’m still waiting for you responding to my #67.
Or is it that simple that you, like achtphasen, simply don’t understand [BJSW00]/eq(14)?
I’m slowly but surely getting exactly that impression.
Regards,
Holger
#90 | ralfkannenberg | 7. September 2011, 12:02 (@achtphasen)
*rofl*
That was a good one! 😀
@91
I’ve already directed the reader to Wilczek’s more recent exposition on strangelet risk, contained in his Amicus Curiae brief, where I have shown his ideas are not reasonable.
@90 Thanks for linking to this in a version accessible to the public without having to pay a fee. Yes, page 26 has very conclusory language that ignores the facts referenced by myself earlier. Wilczek claims that negative strangelets are not likely. More recent theory (Peng et al.) shows it is possible. Wilczek claims strangelets on the moon have as much time to react as ones at RHIC (this was a pre-LHC publication directed towards the issues I raised in 2000 regarding the RHIC), ignoring that they might subsequently self-destruct because of their high creation-velocity relative to the non-moving moon atoms. And Wilczek ignores that the moon does not have a good „growing ground“ of lowZ material, which strangelet theory requires for metastable (radioactive) strangelets to grow to stability, if they were formed by p-on-highZ on the moon’s surface. These criticisms of mine back then were simply brushed aside without direct answer, and there still is no viable response that I have seen. Rather, they deleted the „Lead-Lead collisions in deep space argument“ (saying the RHIC experiment was carried out in nature in deep space by cosmic rays colliding head-on) they’d earlier made, which I quickly showed was completely untenable, as I’ve shown above.
I suppose it’s good to let the casual reader (and I presume there are readers other than the few people posting here!!) see these errors/omissions of Wilczek et al., and why there are numerous persons who are dissatisfied with the LHC safety review, to date.
Precisely, Walter, you tried to „direct“ the readers away from the core concepts, like [BJSW00]/eq(14) and [BJSW00]/eq(13).
Why would you do that if you had hands-on expertise?
Hello Dr.Wagner,
are you referring to this blog or are you referring to a publication (you know, peer review and so …), where I can read these things in detail ?
Best regards, Ralf Kannenberg
Hello Dr.Wagner,
above you have written as follows:
The reader will think that what you are writing were in contradiction to Jaffe et al. But that is not the case, reading pages 25 and 26 carefully:
As you can see, Jaffe et al. talk about the scenario you are mentioning, a scenario highly contrived, where the laws of physics are bent, if not broken.
Best regards, Ralf Kannenberg
@96
Thanks for pointing that out. It’s been awhile since I shot down the highZ-highZ collisions in space arguments that were initially raised, so it appears that they addressed it and shot it down themselves here as well in their „version 3“, essentially copying my argument (published earlier in the legal pleadings pertaining to the RHIC, as well as elsewhere).
And, yes, at the RHIC (AFTER collisions were performed) it becomes safe to say that very low mass strangelets would likely be very short lived with T-1/2 << 10^-7 seconds, since none were detected during those earliest runs.
But whether that holds true or not at higher energies of the LHC is not certain. Certainly they say it is an "estimate" of an expected T-/12. Yet they provide no methodology for how they obtained that value, or error bars on the "estimate". And again, maybe it is correct, I don't know. No one does. That is why searches for strangelets are planned for the LHC, because it is possible (so far as is our current state of knowledge) that the T-1/2 is sufficiently long that they could survive long enough to pass through a detector (and subsequently maybe embed in the He bath and begin growing) and reveal their existence. I should not have to remind you that such 'estimates' in theoretical physics are notoriously often wide of the mark. (The null result of the Higgs search comes to mind).
Regards,
Walter L. Wagner
Hello Dr.Wagner,
„version 2„, to be precise. But there the bending of the laws of physics is not yet mentioned.
Best regards, Ralf Kannenberg
Hello Dr.Wagner,
I just see that you and Dr.Kent (what a surprise …) are mentioned in Reference [5] of „version 2“ and „version 3“.
So what’s the problem ?
Best regards, Ralf Kannenberg